The effect of nanometre-scale structure on interfacial energy.

نویسندگان

  • Jeffrey J Kuna
  • Kislon Voïtchovsky
  • Chetana Singh
  • Hao Jiang
  • Steve Mwenifumbo
  • Pradip K Ghorai
  • Molly M Stevens
  • Sharon C Glotzer
  • Francesco Stellacci
چکیده

Natural surfaces are often structured with nanometre-scale domains, yet a framework providing a quantitative understanding of how nanostructure affects interfacial energy, gamma(SL), is lacking. Conventional continuum thermodynamics treats gamma(SL) solely as a function of average composition, ignoring structure. Here we show that, when a surface has domains commensurate in size with solvent molecules, gamma(SL) is determined not only by its average composition but also by a structural component that causes gamma(SL) to deviate from the continuum prediction by a substantial amount, as much as 20% in our system. By contrasting surfaces coated with either molecular- (<2 nm) or larger-scale domains (>5 nm), we find that whereas the latter surfaces have the expected linear dependence of gamma(SL) on surface composition, the former show a markedly different non-monotonic trend. Molecular dynamics simulations show how the organization of the solvent molecules at the interface is controlled by the nanostructured surface, which in turn appreciably modifies gamma(SL).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study on Structure and Property of Special Sulfonated Petroleum as a Complicated Anionic Surfactant

Alkaline/surfactant/polymer (ASP) flooding has been extensively applied to enhancing oil recovery. As an oil displacement agent, pe1troleum sulfonate (PS) is widely used in ASP pilot experiments. It is very important to find a petroleum sulfonate with a high interfacial activity and low adsorption loss. Anionic surfactant petroleum sulfonate is synthesized in a single-tube film sulfonation reac...

متن کامل

Dynamic heterogeneity controls diffusion and viscosity near biological interfaces

At a nanometre scale, the behaviour of biological fluids is largely governed by interfacial physical chemistry. This may manifest as slowed or anomalous diffusion. Here we describe how measures developed for studying glassy systems allow quantitative measurement of interfacial effects on water dynamics, showing that correlated motions of particles near a surface result in a viscosity greater th...

متن کامل

On the Role of Nanometer Scale Structure on Interfacial Energy

Natural surfaces are often structured with nanometre-scale domains, yet a framework providing a quantitative understanding of how nanostructure affects interfacial energy, γSL, is lacking. Conventional continuum thermodynamics treats γSL solely as a function of average composition, ignoring structure. Here we show that, when a surface has domains commensurate in size with solvent molecules, γSL...

متن کامل

The Effects Of Interfacial Roughness On The Argon Ion Implanted Tantalum Films

In the present study, effect of interfacial roughness on the ion implanted Tantalum based surfaces has been investigated. The argon ions with energy of 30 keV and in doses of 1×1017 , 3×1017 , 5×1017 , 7×1017 , and 10×1017  (ion/cm2) have been used at ambient temperature. The Atomic Force Microscopy (AFM), analysis have been used to study and characterize the surfaces morphology. The effect of ...

متن کامل

A Novel Hybrid Nano Scale MOSFET Structure for Low Leak Application

In this paper, novel hybrid MOSFET(HMOS) structure has been proposed to reduce the gate leakage current drastically. This novel hybrid MOSFET (HMOS) uses source/drain-to-gate non-overlap region in combination with high-K layer/interfacial oxide as gate stack. The extended S/D in the non-overlap region is induced by fringing gate electric field through the high-k dielectric spacer. The gate leak...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nature materials

دوره 8 10  شماره 

صفحات  -

تاریخ انتشار 2009